24 research outputs found

    Partially Ordered Two-way B\"uchi Automata

    Full text link
    We introduce partially ordered two-way B\"uchi automata and characterize their expressive power in terms of fragments of first-order logic FO[<]. Partially ordered two-way B\"uchi automata are B\"uchi automata which can change the direction in which the input is processed with the constraint that whenever a state is left, it is never re-entered again. Nondeterministic partially ordered two-way B\"uchi automata coincide with the first-order fragment Sigma2. Our main contribution is that deterministic partially ordered two-way B\"uchi automata are expressively complete for the first-order fragment Delta2. As an intermediate step, we show that deterministic partially ordered two-way B\"uchi automata are effectively closed under Boolean operations. A small model property yields coNP-completeness of the emptiness problem and the inclusion problem for deterministic partially ordered two-way B\"uchi automata.Comment: The results of this paper were presented at CIAA 2010; University of Stuttgart, Computer Scienc

    Walking automata in free inverse monoids

    Get PDF
    International audienceWalking automata, be they running over words, trees or even graphs, possibly extended with pebbles that can be dropped and lifted on vertices, have long been defined and studied in Computer Science. However, questions concerning walking automata are surprisingly complex to solve. In this paper, we study a generic notion of walking automata over graphs whose semantics naturally lays within inverse semigroup theory. Then, from the simplest notion of walking automata on birooted trees, that is, elements of free inverse monoids, to the more general cases of walking automata on birooted finite subgraphs of Cayley's graphs of groups, that is, elements of free E-unitary inverse monoids, we provide a robust algebraic framework in which various classes of recognizable or regular languages of birooted graphs can uniformly be defined and related one with the other

    Are we ready to track climate-driven shifts in marine species across international boundaries? - A global survey of scientific bottom trawl data

    Get PDF
    Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.En prensa6,86

    On Languages of One-Dimensional Overlapping Tiles

    No full text
    corecore